
Coms 262 Project 3A - Hash Tables Spring 2018

Introduction

When we store data in a list, we typically place it in whatever spot is convenient. For
example, if we are storing the name John Doe, we might write

list.pushBack("John Doe");

or if we want to place it in a specific position, we might write

list.insert(pos, "John Doe");

In either case, if we go back later to find the name John Doe, we probably have to
search the list for it because we no longer know exactly where it is. Wouldn’t it be
great if we could know ahead of time exactly where John Doe is stored. That would
be possible if the list were designed in such a way that there was only one place where
John Doe could be stored. That is exactly what a hash table does.

Hash Tables

Let’s assume that we are storing names and e-mail addresses, so that when we look up
John Doe in the list, we will get back his e-mail address (which is john@hsc.edu). A
simplistic method would be to use the first letter of the person’s name and interpret
it as a position. So for John Doe, we would use the J, which has an ASCII value of
74. We would store John Doe (and his e-mail address) in position 74 of the list. An
obvious problem with this scheme is that there are many names that begin with the
letter J. We cannot store all of them in position 74. Furthermore, 63 is the ASCII
value of the question mark ‘?’. It is unlikely that anyone’s name begins with a
question mark, so that position would never be used.

On the other hand, if we used the entire name John Doe, and added up the ASCII
values of all the characters (including the blank), then we would have a number that
would probably not match any other name. In the case of John Doe, that number is

74 + 111 + 104 + 110 + 32 + 68 + 111 + 101 = 711.

What if the list has only 250 positions? Then we divide by 250 and use the remainder.
In other words, we use 711 mod 250 = 211. The hash function h is the function that
computes this. In our example,

h("John Doe") = (‘J’ + ‘o’ + ‘h’ + ‘n’ + ‘ ’ + ‘D’ + ‘o’ + ‘e’) mod 250

= 711 mod 250

= 211.

In this example, the name John Doe is called the key. It is used to determine the
location. The rest of the data (the e-mail address) is called the value. Each position
in the hash table holds a key and a value. Later, if we want to look up John Doe’s
e-mail address, we simply repeat the calculation and get the index 211. Then we
know that John Doe’s e-mail address is stored in position 211 of the hash table.

1



Collisions

It is not hard to imagine that two different names n1 and n2 could produce the same
index. That is, h(n1) = h(n2) even though n1 6= n2. In other words, h is not a
one-to-one function. Because of this possibility, at each index of the array, rather
than store a single record we will store a list of records. Each such list is called a
bucket. The bucket will contain all records whose keys produce that index.

Obviously, it is best to avoid collisions. To this end, we would like our hash
function to distribute the indexes as evenly as possible. Ideally, the keys would
produce numbers with a uniform distribution. An easy way to achieve that is to use
the numerical value of the key (e.g., 711) as the seed in the built-in random number
generator rand(). Thus, in the above example, we would first compute 711, then
pass 711 to srand() to initialize the seed, then use rand() to get a random number,
and finally, mod it by the size of the array. It so happens that John Doe produces
the random integer 11716. Had the name been John Roe, the random integer would
have been 18076. Had the name been John Coe, the random integer would have been
27645. You get the idea: any change at all in the name will produce a completely
different index, and the indexes produced will be distributed evenly over the array. If
the array size were 250, then these integers would give us indexes 216, 76, and 145.
Note that they are well distributed.

The data structure looks like this.

0

h("John Doe") = 211

("John Doe", "john@hsc.edu")

1

2

3

4

211

:

246

247

248

249

:

2



Resizing the Hash Table

We will define the size of the hash table to be the number of records stored in the
table and define the capacity of the table to be the number of buckets.

Clearly, the larger the hash table, the less likely will be a collision, and the smaller
the hash table, the more likely a collision. Making the hash table too small will result
in too many collisions. Making the array too large will result in wasted memory.
The rule of thumb is that the size the hash table should be no greater than 3/4 the
number of buckets and no less than 1/4 the number of buckets. So if the hash table
has 400 buckets, then it will function most efficiently when its size is between 100
and 300 records.

We will follow these rules: Once the table size reaches 3/4 of its capacity, we will
double its capacity. As records are deleted, once the table size drops as low as 1/4
of its capacity, we will halve its capacity. Both of these operations will require a
resize() function. However, under no circumstances should the number of buckets
be less than 8.

We must be aware that when the table is resized, the hash function will produce
new indexes for each element. In the earlier example, after using the rand() function,
the three records were stored in locations 216, 76, and 145. If the size is halved to
125, then those same three records will be stored in location 11716 mod 125 = 91,
18076 mod 125 = 76, and 27645 mod 125 = 20. Thus, when we copy records from
the old memory to the new memory, we must use the hash function to determine each
record’s location. A similar phenomenon occurs when the capacity is doubled. The
details are discussed below.

The HashtableEntry Class

The HashtableEntry template class is an extremely simple class. A HashtableEntry

object consists of a key and a value. The key is a string and the value is an object
of type T. Note that this is a template class. See the document HashtableEntry

Class.pdf.

The Hashtable Class

The Hashtable class is described in detail in the document Hashtable Class.pdf.
Read the document carefully. Note a few things.

• The m bucket data member has data type

ArrayList<LinkedList<HashtableEntry<T>>>.

That is, it is an array list of linked lists of HashtableEntry objects. An array
list is used so that buckets can be accessed quickly. A sequential search is done
to locate the HashtableEntry object within the bucket, which is acceptable
because the buckets will always be very small, seldom having more than three
members, even when the table is filled to 3/4 capacity. Therefore, a sequential
search of the buckets will be very fast.

3



• The default capacity of the hash table is 8 buckets. When the hash table is
emptied, the empty will still contain 8 buckets, although each bucket will be
empty.

The State Class

I have compiled data about the 50 states of the United States in a file named State

Data.txt. The data include the state abbreviation, name, capital city, population,
etc. Create a State class that contains the data for a single state. This is a very
simple class. The details are in the document State Class.pdf.

The Test Programs

I have written a two simple test programs named HashtableEntryTest.cpp and
HashtableTest.cpp. HashtableEntryTest.cpp creates objects of type Hashtable-

Entry<State>, using the State class. The program creates hashtable entries from
some fictitious states (Atopia and Krasnovia) and then performs basic operations on
those entries. For each state, the state’s two-letter abbreviation serves as the key.
The data about the state (including its two-letter abbreviation) constitute the value
of the entry. Use this program to test your HashtableEntry class.

HashtableTest.cpp begins by creating an empty hash table with capacity 8.
Then it stores 12 records in the table, which should quadruple the capacity to 32
(once when the size reaches 6 = 3/4 of 8 and again with the size reaches 12 = 3/4
of 16). After storing the records, the structure of the table is displayed. Then
the records themselves are displayed in a nicely formatted style (according to the
display() function defined in the State class). Then the twelve states are retrieved
individuall and displayed.

After an attempt to retrieve a non-existent state, all but 2 of the records are
deleted, causing the capacity to be halved twice (once when the size is 8 = 1/4 of
and again when the size is 4 = 1/4 of 16, but not when the size is 2 = 1/4 of 8).
After deleting those records, the program displays the structure of the table and then
attempts to retrieve one of the deleted records, an attempt which should fail. Use
the test program to test your Hashtable class.

When you are finished testing your work, turn in the files arraylist.h, linkedlist.h,
linkedlistnode.h, hashtable.h, hashtableentry.h, state.h, and state.cpp.
Your work is due by 5:00 pm Monday, March 19. (On Monday, March 19, Project
3B will be assigned. You want to be sure that Project 3A works.)

4


